Page 131 of Project Hail Mary
“How do you make xenonite again? You mix two liquids?”
Rocky is caught off guard by the question, but he answers.“Yes. Have liquid and liquid. Mix. They become xenonite.”
“How much can you make? How much of those liquids did you bring?”
“I bring much. I use to make my zone.”
I bring up a spreadsheet and start typing in numbers. “We need 0.4cubic meters of xenonite. Can you make that much?”
“Yes,”he says.“Have enough liquids remain to make 0.61 cubic meters.”
“Okay. Then I have…an idea.” I steeple my fingers.
—
It’s a simple idea, but also stupid. Thing is, when stupid ideas work, they become genius ideas. We’ll see which way this one falls.
The Astrophage breeding grounds are 10 kilometers into the atmosphere of Adrian. I can’t fly theHail Marythat low because the air is too thick and I’d burn up. I can’t use the engines in the atmosphere because then all heck breaks loose and everything blows up.
So, it’s time to go fishing. We’re going to make a 10-kilometer-long chain, put a sampling device of some kind on the end (Rocky will make that), and drag it through the atmosphere. Easy enough, right?
Wrong.
TheHail Maryhas to maintain a velocity of 12.6 kilometers per second to stay in orbit. Any slower and we’ll decay and burn up. But if we drag a chain through the air at that velocity—even a xenonite chain—it’ll get torn up and vaporized.
So we have to go slower. But going slower means falling toward the planet. Unless I use the engines to constantly maintain altitude. But if I do that, I’d be thrusting directly away from the chain and sample device. The exhaust from the engines will vaporize all of it.
So we’ll thrust at an angle. Simple as that.
It’ll look absolutely ridiculous. TheHail Marywill be tilted to 30 degrees from vertical, thrusting upward at that angle. Below it, the chain will dangle 10 kilometers into the air straight down. The atmosphere behind the thrusters will be in a constant state of ionized fire. It should be quite a show. But it’ll bebehindus and the chain will be passing through unaffected air.
All told, our lateral velocity will be just over 100 meters per second. The chain can handle that speed in the thin high-altitude air, no problem. I calculated that it’ll only deflect about 2 degrees from vertical.
Once we feel like we have a sample, we skedaddle. What could possibly go wrong!
I say that ironically.
I’m not the greatest 3-D modeler, but I’m able to make a chain link in CAD reasonably well. It’s not a normal oval link, though. It’s mostly oval, but with a thin opening for another link to enter. Easy to assemble the links, but extremely unlikely for them to rattle apart. Especially when they’re under tension.
I grab a block of aluminum and mount it in the mill.
“This will work, question?”Rocky asks from his ceiling tunnel.
“It should,” I say.
I fire up the mill and it gets right to work. It drills out the mold for a chain link exactly the way I’d hoped.
I pull the workpiece out, dust off the aluminum shavings, and hold it up to the tunnel. “How’s this?”
“Very good!”Rocky says.“We will need many many many chain links. More molds means I can make more at one time. You can make many molds, question?”
“Well.” I look in the supply cabinet. “I have limited amounts of aluminum.”
“You have many items in ship you no use. Two beds in dormitory, for instance. Melt them, make blocks, make more molds.”
“Wow. You don’t do anything by half-measure, do you?”
“No understand.”
Table of Contents
- Page 1
- Page 2
- Page 3
- Page 4
- Page 5
- Page 6
- Page 7
- Page 8
- Page 9
- Page 10
- Page 11
- Page 12
- Page 13
- Page 14
- Page 15
- Page 16
- Page 17
- Page 18
- Page 19
- Page 20
- Page 21
- Page 22
- Page 23
- Page 24
- Page 25
- Page 26
- Page 27
- Page 28
- Page 29
- Page 30
- Page 31
- Page 32
- Page 33
- Page 34
- Page 35
- Page 36
- Page 37
- Page 38
- Page 39
- Page 40
- Page 41
- Page 42
- Page 43
- Page 44
- Page 45
- Page 46
- Page 47
- Page 48
- Page 49
- Page 50
- Page 51
- Page 52
- Page 53
- Page 54
- Page 55
- Page 56
- Page 57
- Page 58
- Page 59
- Page 60
- Page 61
- Page 62
- Page 63
- Page 64
- Page 65
- Page 66
- Page 67
- Page 68
- Page 69
- Page 70
- Page 71
- Page 72
- Page 73
- Page 74
- Page 75
- Page 76
- Page 77
- Page 78
- Page 79
- Page 80
- Page 81
- Page 82
- Page 83
- Page 84
- Page 85
- Page 86
- Page 87
- Page 88
- Page 89
- Page 90
- Page 91
- Page 92
- Page 93
- Page 94
- Page 95
- Page 96
- Page 97
- Page 98
- Page 99
- Page 100
- Page 101
- Page 102
- Page 103
- Page 104
- Page 105
- Page 106
- Page 107
- Page 108
- Page 109
- Page 110
- Page 111
- Page 112
- Page 113
- Page 114
- Page 115
- Page 116
- Page 117
- Page 118
- Page 119
- Page 120
- Page 121
- Page 122
- Page 123
- Page 124
- Page 125
- Page 126
- Page 127
- Page 128
- Page 129
- Page 130
- Page 131 (reading here)
- Page 132
- Page 133
- Page 134
- Page 135
- Page 136
- Page 137
- Page 138
- Page 139
- Page 140
- Page 141
- Page 142
- Page 143
- Page 144
- Page 145
- Page 146
- Page 147
- Page 148
- Page 149
- Page 150
- Page 151
- Page 152
- Page 153
- Page 154
- Page 155
- Page 156
- Page 157
- Page 158
- Page 159
- Page 160
- Page 161
- Page 162
- Page 163
- Page 164
- Page 165
- Page 166
- Page 167
- Page 168
- Page 169
- Page 170
- Page 171
- Page 172
- Page 173
- Page 174
- Page 175
- Page 176
- Page 177
- Page 178
- Page 179
- Page 180
- Page 181
- Page 182
- Page 183
- Page 184
- Page 185
- Page 186
- Page 187
- Page 188
- Page 189
- Page 190
- Page 191
- Page 192
- Page 193
- Page 194
- Page 195
- Page 196
- Page 197
- Page 198
- Page 199
- Page 200
- Page 201
- Page 202
- Page 203
- Page 204
- Page 205
- Page 206
- Page 207
- Page 208